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ASSESSMENT MODEL FOR ESTUARINE CIRCULATION AND SALINITY 

Kurt W. Hess 

Marine Environmental Assessment Division 
Assessment and Information Services Center 

National Environmental Satellite, Data, and 
Information Service, Washington, DC 20235 

ABSTRACT. A numerical model for three-dimensional time
dependent circulation and concentration is described. 
The mass and momentum equations are split into internal 
and external modes to save computer run time. A 
dimensionless vertical variable allows for a uniform 
number of levels at all cells in the square-grid mesh. 
The model was tested on cases representing tidal, wind, 
and density flow, and concentration distributions. 
Results from a prototype model of Chesapeake Bay tides 
and currents are included. Changes in salinity due to 
hurricane Agnes are discussed. 

1. INTRODUCTION 

The Marine Environmental Assessment Division has developed a three-dimensional 
numerical model for estuarine and coastal circulation. The model computes tidal, 
wind-driven, and density-driven currents in bays and coastal areas. The model 
is documented herein for informed user interaction, and the technique can be 
applied to problems involving the assessment of impacts of extreme weather and 
oceanic events on the marine environment. 

Assessment of extreme environmental conditions frequently benefits from a 
knowledge of local water circulation patterns. Examples of this type of problem 
are marine pollution behavior, effects of bay-shelf exchanges on fishery recruit
ment, the dynamics of anoxic events, and extreme reductions or increases in 
estuarine salinity or temperature. The spatial variability of the relevant 
quantities which describe the system is best expressed in three dimensions. 
Each of these problems can benefit from the application of a numerical hydro
dynamic model. In addition, the application of a circulation model to a particu
lar area often leads to a deeper understanding of the physical processes which 
are important for the local dynamics. This knowledge helps both the qualitative 
overview of a complex system, and establishes quantitative limits on many of the 
variables which determine the state of the system. 

Three-dimensional numerical models have been used routinely for the last 
several years. One of the best known of these is the Rand Corporation model 
developed by Leendertse and his collegues (Liu and Leendertse, 1975), and 
applied to several coastal areas. Another well-known model was developed by 
Blumberg, Mellor, and associates (Blumberg and Mellor, 1981) at Dynalysis of 
Princeton, Inc. The Sheng (1983) model, developed for the U. s. Army Engineer 
Waterways Experiment Station, has been applied to the shallow shelf region of 



the Louisiana-Mississippi eoast. The major problems with the use of these models 
are the laek of doeumentation and the proprietary status of the eomputer eode. 

The eomputer model deseribed here, MECCA (Model for Estuarine and Coastal 
Cireulation Assessment), shares many of the features of other three-dimensional 
models. MECCA is designed to eompute eurrents due to winds, tides, atmospherie 
pressure gradients, and density gradients at points on a grid mesh. The model 
solves the external, or barotropie, mode of water flow separately from the 
internal, or baroelinie, mode. The external mode eireulation is eomputed using 
a vertieally-integrated model to get the water level and flowrates (e.g. Hess 
and White, 1974). A dimensionless vertieal eoordinate is used so a uniform 
number of vertieal levels oeeurs everywhere in the grid. The internal mode 
veloeities and the eoneentrations are eomputed at all levels (e.g. Hess, 1975). 
Turbulent exehange is modeled as a loeal proeess without the transport of 
turbulent kinetie energy. The program was written to run in Fortran on a VAX 
11/750 eomputer. 

This report eontains a brief deseription of the model, its equations, and 
some of its behavior. Further information ean be found in Hess (1985a, b, e). 

2. THE MODEL FORMULATION 

The MECCA program is designed to simulate water eurrents with numerieal 
finite-differenee methods for eoastal areas sueh as bays, estuaries, and the 
shallow waters of the eontinental shelf. The hydrodynamie equations for gener
alized fluid flow were the starting point for the development, but experienee 
has shown that many of the terms in the equations represent proeesses whieh ean 
be negleeted for the speeifie type of flow we are studying. We have eonfined 
the applieation of the model to veloeity and eoneentration distributions whieh 
are slowly varying in time and spaee. Changes in the horizontal direetion are 
on the seale of hundreds of meters to kilometers, and in the vertieal are on 
the seale of tens of eentimeters. The time seale is on the· order of hundreds 
of seeonds. The small spatial seale allows the use of reetangular, rather than 
spherieal, eoordinates. Depths are limited to be of the same order of magnitude 
as the typieal Ekman depth (tens of meters). 

The eomputer program solves the equations of single-solute, variable-density 
water flow in shallow water in a right-handed eoordinate system with the 
x-direetion arbitrary, and the z-axis direeted upward. The equations are the 
momentum balanees for horizontal flow, the hydrostatie approximation, mass 
eontinuity, eonservation of a solute, and an equation of state. Metrie units, 
with a few exeeptions, are used throughout the development. Salinity units are 
parts per thousand (ppt). 

2.1 The Model Equations 

The set of governing equations for water flow are used in MECCA. In the 
equations, a subseript eomma followed by a parameter denotes partial differen
tiation with respeet to that parameter. Multiple parameters in the subseript 
denote multiple differentiation. For example, 

2 



3u/3t = u t 
' 

and 

The dependent variables are the velocity components (u, v, w), the pressure 
(p), density ( p), and concentration (c). For the most part the concentration 
represents salinity, although the development is general enough to represent 
temperature. Symbols are defined in Appendix I. The governing equations used 
in the model are as follows. 

Horizontal velocity in the x-direction is given by 

u,t + (uu),x + (uv),y + (uw),z = -1/P0 P,x + fv + Ah(u,xx + u,yy) 

+ <Avu z) z 
' ' 

Horizontal velocity in they-direction is given by 

v,t + (vu),x + (vv),y + (vw),z = -1/p 0 P,y- fu + Ah(v,xx + v,yy) 

+ (Avv z) z 
' ' 

The hydrostatic equation is 

P,z=-pg, 

The equation for water mass conservation is 

u,x + v,y + w,z = 0. 

The equation of conservation of the solute is 

c,t + (uc),x + (vc),y + (wc),z- Dh(c,xx + c,yy)- (Dvc,z),z = 0 

The equation of state for water is 

P = p 0 (1 + ac) 

2.2 Boundary Conditions 

(1) 

(2) 

(3) 

(4) 

(5) 

( 6) 

Boundary conditions at the top and bottom horizontal surfaces are discussed 
first. The conditions for the horizontal velocities are the equality of stresses 
applied to the upper and lower surfaces. At the upper surface (z =h), the 
applied stress is due to the wind, and at the lower surface (z = -d) the applied 
stress is due to bottom friction. That is, 

u,z = TSX' v ,z = Tsy at z = h, ( 7) 

u,z = Tbx• v,z = Tby at z = -d. (8) 

For the vertical velocity, the kinematic matching condition applies, 

w = ht+uhx+ vh,y at z = h, 
' ' 

(9) 

w = uh,x + vh,y at z = -d. (10) 
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For the concentrations, the condition at each horizontal surface is 

c,z = Ic(x,y,z,t) at z = h, 

c,z = 0 at z = -d 

(11) 

(12) 

The ·top boundary condition allows for an input at the atmospheric interface, 
which is non-zero if c is temperature. For salinity, Ic = 0. 

At lateral boundaries, there are several possible conditions. If the boundary 
is a land-water interface, the velocity normal to the side is zero, 

u = 0 at boundaries normal to the x-direction, 

v = 0 at boundaries normal to the y-direction. 

For the concentrations, the advective mass flux will automatically be zero, 
and the diffusive flux must vanish 

Dhc x 0 at boundaries normal to the x-direction, , 
Dhc,y = 0 at boundaries normal to the y-direction. 

(13) 

(14) 

(15) 

(16) 

If the lateral boundary is open, another set of conditions applies. At the 
ocean we can specify the water level 

h = Fh(x,y,t) (17) 

or the velocities normal to the side, 

u = Fu(x,y,z,t) at boundaries normal to the x-direction, (18) 

v = Fv(x,y,z,t) at boundaries normal to the y-direction. (19) 

The radiation boundary condition (Wurtele, et al., 1971) can be used to allow 
free waves to propagate out of the region: 

h = U(gH)-1/2 at boundaries normal to the x-direction, (20) 

h = V(gH)-1/2 at boundaries normal to the y-direction. (21) 

The concentrations are also specified 

c = Fc(x,y,z,t) (22) 

when the flow is coming into the domain of computation. If the flow is out, 
the condition is specified as a function of the local distribution 

c,xx = 0 at boundaries normal to the x-direction, (23) 

c,yy = 0 at boundaries normal to the y-direction. (24) 
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2.3 Stress Parameterization 

The interfacial stresses are expressed in the following ways. The wind stress 
per unit water density (specific stress) at the upper surface is defined as 

(25) 

where r is the ratio of air and water density (here r=0.00125), and the drag 
coefficient (Wu, 1975) is 

Caw = 0.0008 + 0.000065 V1o· (26) 

Bottom specific stresses can have two forms. Allowing for a slip along the 
bottom, the specific stress is 

(27) 

The nominal value for Cwb is 0.003. If the bottom condition is a zero velocity, 
the specific stress is taken as 

(28) 

2.4 Turbulent Parameterization 

The turbulent exchange parameters need to be specified to complete the set 
of equations. The horizontal momentum exchange coefficient, Ah, is taken as a 
constant. The vertical momentum exchange coefficient, Av, is taken as the product 
of a mixing length, the local velocity shear intensity, and a function of the 
Richardson number, Ri. 

Ri = -g P z/ p 0 (u z + v z> 2 

' ' ' 
~ = [kz(h- z))[(u,z + v,z> 112J[(1 + c1 Ri)-C2) 

where k is von Karman's constant (0.40). 

(29) 

(30) 

The horizontal mass exchange coefficient, Dh, is taken as a constant. The 
vertical exchange coefficient, Dv, is taken as a constant fraction, Ry, of 
the vertical momentum coefficient, 

Dv = Rv Av (31) 

Nominal values for C1, C2, and Ry are 5.0, 1.0, and 0.001, respectively. 

2.5 Beta-Plane Formulation 

The Coriolis parameter, f, is expressed by the beta-plane approximation, 

(32) 

5 



where (x0 , y0 ) is a reference point in the grid mesh and f 0 is the Coriolis 
parameter at that point. Gradients of f are evaluated at the reference point. 
Both the x- and y-variations are needed because the grid axes are not necessarily 
aligned north-south. 

2.6 Numerical Solution Techniques 

The equations used in the computer program are developed from the set of 
governing equations (1 - 6) by a four-step process. First, the equations are 
integrated over the vertical to yield transport relations for the horizontal 
flowrates. Next, the transport relations are put into the form for mean velocity 
by dividing by the total depth. Then, the full three-dimensional momentum equa
tions are subtracted from the mean velocity equations to give the internal-mode 
equations. Finally, the internal-mode equations are recast with the dimension
less vertical variable. The equations at each step of the process are listed 
in Appendix II. 

The equations for the external mode are solved by an alternating-direction 
implicit finite-difference method, attributed to Abbott (Sobey, 1970) to augment 
numerical stability (Hess, 1985a). The non-linear advective terms are included 
as either forward or backward differences, depending on the direction of the 
current (Ramming and Kowalik, 1980). The internal mode velocities are then 
solved at each horizontal grid (Hess, 1985b). An implicit method calculates 
the horizontal internal-mode velocities (Hess, 1976), but not at each timestep 
so that computer run time is saved. The concentration is updated (Hess, 1985c) 
at each grid by solving (5) implicitly over z. 

The equations are solved at points on a grid mesh of square elements with a 
gridsize denoted by 6L and a timestep by 6T. The variables are staggered in 
space (Fig. 1) to eliminate the build-up of short wavelength noise. Corner 
grids of triangular shape are permitted to better represent the coastline (Hess, 
1985a). The model has 9 layers, and velocity and concentration variables at 
10 levels. 

3. MODEL TESTING 

A number of test runs were made to refine the computational scheme and assess 
the behavior of the numerically-computed solution. In most cases the applica
tion of the model to a particular problem leads to a deeper understanding of 
the physics of the process. Changes in the numerical code were made with the 
physics and behavior of coastal currents in mind. 

3.1 Tidal Flow 

The first test was the comparison of the model output with the analytical 
solution for the case of forced oscillation of a semi-enclosed channel. The 
phenomenon is analogous to tidal forcing of a bay. The analytic solution given 
by Ippen and Harleman (1966) for water level and currents in a rectangular bay 
of length L and depth d without wind, bottom stress, non-linear advection, or 
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density variations, and driven by a tide of amplitude b (range 
T is as 

h = (b/cos(kL))cos(2 Tit/T)cos(kx) 

u = -(2bC0 /d cos(kL))sin(2 rrt/T)sin(kx). 

2b) and period 

(33) 

(34) 

The' closed end of the basin is at x=O, and here k=2 rr/L and C
0
=(gd)l/2 , Figure 

2 shows the comparison, which is excellent, for g=9.81 m2/s, L=36 km, bL=6 km, 
bT = 60 s, T=6 h, and d=10 m. Typical maximum differences between the two 
solutions are on the order of 0.001 m. 

The results for the velocity comparison and for the case of a free oscillation 
in an enclosed basin were equally good. 

3.2 Wind-driven Flow 

Wind-driven currents are of great practical importance in bays and coastal 
areas. The next test case was the comparison of numerical and analytic solution 
for the steady-state current due to a constant wind blowing over shallow 
homogeneous water. For the case of zero velocity at the bottom, the analytic 
solution (Ekman, 1905) is 

u = Asinh(az)cos(az)-Bcosh(az)sin(az) 

v = Acosh(az)sin(az)+Bsinh(az)cos(az), 

where 

(35) 

(36) 

A= (TsylaAv)[cosh(ad)cos(ad)+sinh(ad)sin(ad)]/[cosh(2ad)+cos(2ad)], (37) 

B = (TsylaAv)[cosh(ad)cos(ad)-sinh(ad)sin(ad)]/[cosh(2ad)+cos(2ad)], (38) 

a = (f/2Av)1/2. (39) 

The origin is at the bottom of the water column. Figure 3a shows that the 
agreement is very good for the case of Tsx=O, Tsy=0.000181 m2/s2 , d=11 m, 
Av=0.010 m2/s, L=6 km, bL=1000 m, nT=60 s, and !=0.0001 s-1. Differences are 
on the order of 0.003 m/s. 

3.3 Density-driven Flow 

Another test case involved the currents driven by a horizontal density 
gradient, This type of flow is important in partially-mixed estuaries. An 
analytic solution for the steady horizontal velocity with zero bottom current 
in complex form (Bishop and Overland, 1977) is 

u + iv = (iag/f)(Rx + iRy)[[sinh((d+z)/a)-cosh(z/a)]/cosh(d/a)-z/d], (40) 

where a= (~/if) 11 2 , and (41) 
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(42) 

and there are no wind stresses or surface pressure gradients. The model results 
are very good, as shown in Fi~. 3b, for d=10 m, f=0.0001 s-1, g=9.81 mfs2, 
l\1~1000 m, llT=60 s; Av=0.01 m /s, Rx=2.67 x 10-7 (which corresponds to a hori
zontal salinity gradient of 0.33 ppt per km), and Ry=O. Differences are on 
the order of 0.005 m/s. 

3.4 Non-Linear Velocity Advection 

The non-linear advection terms in the flowrate equations (A.8, A.9) were 
tested by comparison with an analytic solution. The case we used, believed to 
be new, involved solving the simplified x-direction flowrate equation 

The analytic solution we found, for the condition U)O, was 

U ~ U0 exp[-(Cwb/2H)x] (44) 

A plot of the analytic and the model solutions is shown in Fig. 4. For this 
application we used U0 =100 cm/s, Cwb=0.004, H=20 m, ll 1=1000 m, ll T=60 s, and 
1=25 km. The small differences are probably due to the non-centered approxima
tion of the gradient term. 

3,5 Horizontal Concentration Diffusion 

A test of the diffusion calculations was performed with the simplified mass 
conservation equation 

C t - Dhc xx = 0 • ( 45) , , 

with a constant concentration, C0 , at x=O. The analytic solution (Crank, 1956) 
is 

(46) 

The MECCA solution, after a simulated time of 32 h with C0 =20 ppt, is shown in 
Fig. 5, with ll T=300 s, ll 1=5000 m, and Dh=1000 m2/s. The model solution closely 
matches the analytic solution, even in the leading region of low concentration. 

3.6 Concentration Advection and Diffusion 

The accuracy of the numerical solution of the concentration equation was tested 
on the case, believed to be new, of horizontal advection (from a vertically-varying 
velocity) balanced by vertical diffusion. That is 

-u0 sin(TI z/d)c x - Dvc zz = 0. , , (47) 
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where the origin of the z-axis is at mid-depth. This type of flow, which is 
rightward along the bottom and leftward along the top, is similar to estuarine 
circulation. The author has found a solution for a constant-depth basin to be 

(48) 

The comparison of the analytic and computed solutions for C1=20 ppt, C2=-5 ppt, 
u0 =0.3 m/s, and Dv=0.0243 m2/s in a rectangular basin, open at each end, with 
d=20 m, ~L=5 km, ~T=300 s, and L=l25 km appears in Fig. 6. For this particular 
basin length, the concentration never becomes negative. At each end, the con
centration was specified at all levels where the water was flowing into the 
basin. At the other levels, the concentration was extrapolated from the interior 
by assuming that c x was constant across the boundary. The computed solution 
was quite smooth, ~nd didn't show any evidence of the two-grid-length waves 
which often plague numerical schemes when advection is important. The computed 
solution in Fig. 6 was obtained after 480 h of simulation, from initial con
ditions substantially different from the steady-state solution. The error is 
on the order of 0.5 ppt. If we can define an advective time scale as 

t' = L/u0 (49) 

then the time required to approach the steady concentration distribution was 
on the order of 4t 1 • 

Two numerical approximations to the top and bottom conditions were tried. 
These were the first-order and the second-order one-sided differences at each 
boundary. The second-order scheme gave better results for this case, and so 
was used for the operational version of MECCA. 

3.7 Conservation of Mass and Energy 

The model was run for a large number of timesteps ( ~ T = 30 s) to determine 
the mass and energy conservation behavior. Several experiments were performed 
for circulation in a simulated enclosed basin of rectangular shape and constant 
depth. For a free-oscillation experiment, both total mass and solute mass 
balanced to within 1.0 % over several hundred timesteps. The energy calculations 
were more complicated, but the results were nearly as good. The simulation 
reproduced the well-known exchange of energy between the kinetic and potential 
forms. With the addition of bottom friction, the rate work per unit mass, W, 
done by the bottom stresses, 

W, t = uTbx + vTby 

integrated over the bottom area balanced the rate of change of the sum of 
kinetic and potential energy integrated over the volume. 

(50) 

Results were also good for the case of wind-driven circulation in an enclosed 
basin. Wind energy was added to the basin at the surface, and most of the energy 
was dissipated internally. A relatively small amount of energy was dissipated 
at the bottom, but the bottom stress transferred energy from the internal to the 
external mode. The external-mode energy was manifest in a simple oscillation. 
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Energy was conserved when the vertical mass exchange coefficient, Av, was 
either a constant, or varied only over the depth. Energy was not conserved 
when Av was updated by the Richardson number formulation explained in Section 
2.3, because the internal-mode velocities would suddenly change. Presumably 
alterations in Av require an expenditure of energy which is not included in 
the present formulation. 

On the whole, the testing program has given us confidence in the numerical 
model and has shown the expected limits in accuracy. We now proceed to a 
preliminary study of the circulation in the Chesapeake Bay. 

4. PROTOTYPE CHESAPEAKE BAY MODEL 

One of the planned uses for the MECCA program is the simulation of salinity 
distributions in Chesapeake Bay during the high fresh water runoff which accom
panied hurricane Agnes from June 21-27, 1972. Chesapeake Bay, the largest 
estuary on the U.S. coast, is broad and shallow, with dozens of major tributaries 
branching off the main axis (Fig. 7). The geographical complexity of the Bay 
prompted us to begin its study with a prototype numerical model with much simpler 
geometry. The complex dynamics of the Bay could then be more readily isolated 
and analyzed. 

4.1 The Prototype Model 

Early applications of the MECCA program to Chesapeake Bay showed that a model 
grid with 5.5 km resolution would require a large amount of computer run time. 
Consequently, we generated a new, prototype model grid mesh which had simpler 
geometry. The new grid size was 8.0 km, and had only a third of the water cells 
of the more detailed grid. Because of the larger grid size and fewer cells, the 
run time was reduced by a factor of 10. 

The prototype model grid mesh for the Bay is shown in Fig. 8. Based on the 
bathymetry of the more detailed model, we selected a bathymetry with linearly
varying depths. At the head of the Bay, the mean sea level bay depths were on 
the order of 3m, and near the mouth, 10m. Offshore, the depth increased 
linearly from 10 to 22 m. The bathymetry is given in Fig. 9. 

A large segment of the grid is devoted to the offshore area. Studies of the 
surface plume from the Bay (Ruzecki, 1981) show that the fresher water turns 
southward as it exits, and moves parallel to the shore down to Cape Hatteras. 
The outer coast boundary conditions were constructed appropriately. The deep
water boundary, parallel to shore, is assumed to act as a wall, so no flow is 
allowed across. Tidal flow is generally along isobaths, so the tide is applied 
at the northernmost open boundary perpendicular to shore. At the southernmost 
open perpendicular boundary, the radiation outflow condition is used. 

4.2 Tidal Dynamics 

The primary driving for the Bay's currents, and a major source of energy for 
vertical mixing, is the astronomical tide. The tide range near the mouth is 
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about 0.9 m, and the range first decreases then increases up the bay (National 
Ocean Service, 1985). The tide phase changes almost linearly with distance up 
the Bay. 

The model was tested in the tidal mode. The initial conditions were the Bay 
at rest, and a uniformly decreasing salinity up the Bay. The boundary tidal 
input was a sinusoidal variation, with an amplitude increasing linearly up to 
0.45 m after 24 h. This gradual step-up to full amplitude was necessary to 
suppress small-wavelength oscillations which arise when the water is subject 
to sudden accelerations. The tidal period was 12.0 h. We assume that the 
tidal currents are of first order, and that the internal mode currents due to 
horizontal density gradients are of second order. The salinity field was 
therefore kept steady for the tidal runs. The timestep was 600 s. The model 
was run for a simulated time of 160 h, to allow for transients to damp out. 
The tidal variations became quite uniform after only a few tidal cycles (Fig. 
lOa). The computed phase of the tide was acceptably close to the observed 
values (Fig. lOb), so it is not considered further. 

The tide range along the axis of the Bay, based on an 80-h simula~ion, is 
shown in Fig. 12a. The relevant parameters were ~b=0.003, '\. =0 m /s, and 
we used no nonlinear advective terms. The range is close to that observed, 
except that in the lower Bay the model's results are somewhat higher. To test 
for model sensitivity, we varied several of the input parameters. The first 
case involved increasing the bottom friction coefficient from 0.003 to 0.006.· 
The result, shown in Fig. 12b, shows a modest decrease in the tide range all 
along the bay. Ranges in the lower Bay are still too high. 

A second test case involved adding the nonlinear advective terms to the 
equation. The addition of the nonlinear terms increased the run time signifi
cantly. The results are shown in Fig. lla. The nonlinear terms have a small 
effect on the model's computed tide range, and we should be able to safely 
neglect them. 

The last set of 
coefficient, Ah• 

tests was for the influence of the horizont.al momentum exchange 
The coefficient should be in the range (Hess, 1985a) 

(51) 

for 6L=8000 m and 6T=600 s. Three additional test cases were run, one each 
for Ah=lOOO, 5000, and 10,000 m2/s. The results of the model run (Figs. 12b, 
13a,b) showed that increasing Ah to the first value had almost negligible effect, 
and increasing it to the second value modestly decreased the ranges everywhere. 
The third value decreased the ranges so they were too low everywhere. 

These few tests showed that no simple adjustment can correct the tide range. 
Probably the simplified geometry accounts for the discrepancies. We decided 
that the tides were simulated with sufficient accuracy to proceed to the salinity 
tests. 
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4.3 Variable Salinity Computations 

The next set of runs allowed for changes in salinity along with the tidal 
variations and with a constant river inflow. The object was to confirm that 
the coniputations are stable for a long run time. The simulated period was 10 
days, and the computations were stable. The oceanic boundary conditions at the 
northern and southern boundaries at inflow (flow into the computational domain) 
appear in Fig. 14. The salinity distribution is similar to that reported by 
Boicourt (1973). 

The salinity distribution after 10 days of computation is shown in Fig. 15. 
The vertical and horizontal diffusion parameters were Rv=0.001 and Dh = 100 
m2/s. We reran the model with the same boundary conditions, but with ~=0.100. 
The isohalines, also shown in Fig. 15, show that the vertical salinity gradient 
is increased almost everywhere, as expected since the vertical mixing is much 
greater. Over a tidal cycle, the salinity value at each point fluctuated within 
a range of approximately 1 ppt. 

The next test involved the increase of the horizontal diffusion coefficient, 
Dh, from 100 m2/s to 1000 m2/s. The changes in the salinity (Fig. 16.) show 
up as slightly higher concentrations at all depths in the extreme upper Bay. 
In the lower Bay, however, the salinities at the bottom are generally lower. 
This is because the higher diffusion forces a more uniform distribution of 
isohalines. An example is the decrease in the distance between the 26- and the 
31-ppt isopleths near the Bay mouth. 

4.4 Hurricane Agnes 

In late June 1972, hurricane Agnes meandered up the East Coast, bringing 
generally heavy rains to the entire Chesapeake Bay watershed (Fig. 7). Although 
direct rainfall was small, high volumes of fresh water entered the Bay through 
its many tributaries. The Susquehanna River, which normally provides about 
half of the river input, increased its flow by a factor of 20 over its June 
mean. The resulting reduction in salinity caused high mortalities of oysters, 
soft-shell clams, and other estuarine species. 

Most of the damage to organisms occurred in the upper Bay. Soft-shell clams 
normally thrive in the lower-salinity water which occurs north of the Potomac 
River mouth. The hurricane flood, however, reduced salinities to near zero 
for several weeks in much of the habitat. 

Along with the Susquehanna, the Potomac, Rappahannock, York, and James Rivers 
provide approximately 80 percent of the mean river input to the Bay. The mean 
daily flowrates for these rivers, as gaged by the U.S Geological Survey, for 
the period from 20- 27 June, 1972 appear in Table 1. 

In the months immediately following the hurricane, researchers from several 
of the local universities and other research institutions collected hydrographic 
data which quantified the changes in the Bay. These data are discussed in 
papers published by the U.S Army Corps of Engineers (1975a, b). There is 
sufficient data to warrent a model study of the event. 
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The hydrographic data support the following sequence of events. As massive 
volumes of freshwater enter the bay from the Susquehanna, the surface salinities 
decline, producing a low-salinity tongue which reaches as far south as the 
mouth of the Potomac. The upper bay is now highly stratified in terms of 
salinity. A few days later, the bottom salinities decline, producing a more 
nearly homogeneous estuary. Then, the bottom salinities rebound, overshooting 
the normal benthic distribution. Finally the surface salinity inreases, and 
the bottom concentrations receed back to normal. 

4.5 Model Test With Agnes Flowrates 

As a final test, we ran the model for the Bay for the period 0000 local time 
on 21 June to 0000 local time on 12 July. The river flowrates were as shown 
in Table 1. For the dates 28 June to 1 July, which are not covered in the 
table, the Susquehanna River flowrates used were 8, 5, 3, and 2 thousands of 
cubic meters per second (ems). For dates after 1 July, 1.6 thousand ems was 
used. For the Potomac, the values for the same 4 days are 800, 500, 450, and 
400 ems; thereafter 350 ems was used. The initial conditions were the currents 
and salinity distributions at the end of the 10-day run, for which Rv=0.001 
and Dh = 100 m2/s. 

The maximum modeled displacement of the 1-ppt and the 5-ppt isohalines occurred 
at the end of June 29 (day 9 in the simulation). Isopleths at the start of the 
simulation and at the end of day 9 are shown in Fig. 17. Salinities after 9 days 
throughout the Bay are lower than at the start of the run. The daily progression 
of the 5 ppt isohaline at the bottom down the Bay as computed by MECCA is shown 
in Fig. 18, along with the daily Susquehanna flow and observed isohaline dis
placement from its observed position on June 6-7 (Schubel, et al., 1975). The 
modeled displacement approximates the observed value (73 km). 

The differences between the model and the observations can be due to several 
factors. Local depths in the model are only approximate, and the simplified 
grid mesh can not account for all the coastline variations. An increased 
diffusion value would possibly slow the rate of isohaline displacement following 
the peak flood by enhancing the upstream salt transport. Another possiblity 
is that the streamflow values used in the simulation are not realistic, or that 
significant water entered the Bay directly over land. 

5. CONCLUSIONS AND FUTURE WORK 

The results from tests and simulations with MECCA show that the model can be 
a useful tool for describing circulations that are common to coastal areas. 
Tidal, wind-driven, and density-driven currents are obvious examples. MECCA 
can also be useful for assessing changes in salinity and temperature due to 
currents or unusual weather or oceanographic events. 

Some features of the model can be improved. The desirability of extending 
the grid to cover more of the continental shelf, where the water is deeper, 
seems to warrent some method of grid stretching. The methods for specifying 
the oceanic boundary conditions should be studied further. 
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APPENDIX I. List of Symbols 

horizontal momentum exchange coefficient, 
vertical momentum exchange coefficient, 
factor for velocity deviations from the mean, 
salinity ( ppt), 
depth-integrated concentration, 
an integral of concentration over depth, 
water depth at mean sea level, 
horizontal mass exchange coefficient, 
vertical massexchange coefficient, 
Coriolis acceleration= 2 sin(latitude), 
gravitational acceleration, 
water level above mean sea level, 
total water depth, 
von Karman's constant, 
fluid pressure, 
atmospheric pressure at the sea surface, 
horizontal pressure gradient due to variable density, 
dimensionless vertical coordinate, 
ratio of air and water density, 
time, 
wind stress per unit water density on water surface in x-, 
y-di rect ions, 
bottom stress per unit water density on water in x-, y-directions, 
total velocity components in x-, y-, and z-directions, 
depth-integrated flowrates per unit width in x-, y-directions, 
internal mode velocities (departures fron vertical average), 
depth-averaged velocities in x-, y-direction. 
wind speed at 10 meters, 
components of wind in x-, y-directions, 
axial directions in the Cartesian coordinate system, 
density enhancement factor per unit salinity, 
water density, 
reference density, and 
earth's rotation rate. 
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APPENDIX II. The Model Equations 

1. The Basic Equations for Shallow-water Circulation. 

The equations for a fluid in a rotating orthogonal reference frame with the 
z-axis directed upward,are applied to the coastal region. We use the mathemati
cal convention and denote a partial derivative of a variable with respect to a 
parameter as that variable followed by a subscript comma and the parameter. 
Two parameters in the subscript denote multiple differentiation. The x- and 
y-momentum equations (Bryan, 1975) are 

u,t + (uu) ,x + (uv) •. Y + (uw) ,z = -1/P 0 P,x + fv + Ah(u,xx + u,yy) 

+ <Avu z) z , , (A.1) 

and 

v,t + (vu),x + (vv),y + (vw),z = -1/P 0 P,y- fu + Ah(v,xx + v,yy) 

+ <Avv z) z• (A.2) , , 

The hydrostatic equation is 

P,z = -pg. . (A. 3) 

The equation for mass conservation is 

U X + V y + W z = 0. , , , (A.4) 

The equation of state is 

P = P0 (1 +ac). (A.S) 

The conservation of concentration (mass of solute per mass sea water) is 

c t + (uc) x + (vc) y + (we) z - Dh(c xx + c yy) - (Dvc z) z = 0. (A.6) 
' ' ' ' ' ' ' ' 

Values of the parameters are g = 9.81 m/s2, PS = 1 gm/cm3, and a= 0.0008 
ppcl. Here f=2 S1 sin( latitude), where S1 = 0.0 00729 s-1. 

2. The Vertically-Integrated Momentum Equations. 

A tremendous savings in computer time is achieved if the internal, or 
baroclinic, mode of flow is separated from the external, or barotropic, mode. 
To accomplish this we must integrate the equations over the vertical. First, 
we get an expression for the pressure by integrating the hydrostatic equation 
from the bottom, z=-d, to the top, z=h, of the water column. Thus 

z 
p = Pa - !p g dz 

h 

z 
= Pa -.q,g(z - h) - a g fcdz 

h 
where Pa is the atmospheric pressure at the sea surface. 
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The horizontal momentum equations are then integrated over the vertical to 
yield 

and 

u·,t + b[(UU/H),x + (UV/H),y] = -gH h,x- P*x + fV + Tsx- Tbx 

+ Ah[U,xx + U,yyl +HOT, 

V,t + b[(VU/H),x + (VV/H),y] = -gH h,y- P*y- fU + Tsy- Tby 

(A.8) 

+ Ah[V,xx + V,yy)] +HOT, (A.9) 

and the integrated mass equation becomes 

h t + U X+ V y = 0, , , , (A.lO) 

where HOT are higher-order terms arising from the integration of the horizontal 
diffusion terms and the non-linear advective terms since b is not truely 
constant. These terms will be neglected. Also, 

(U,V,C) 

H = h + d, 

h 
f ( u, v, c/H) dz, 

-d 

P*r = (pa) r - (~ g/2)(C*H2) r - ~gHCd r , , , 
-d 

c* = r2 J 
h 

z 
Jc drdz, 
h 

(r=x or y), 

In the derivation of the integrated equations, we have used Leibnitz's rule 
to bring the derivatives outside the integral. Also, we have used the kinematic 
boundary conditions, which are 

w = dh/dt = h,t + uh,x + vh,y at z = h, 

and 
w = 0 = -ud x - vd y 

' ' 
at z = -d. 

3. Equations for Mean Horizontal Velocities 

It will become apparent in the next section that the momentum equations will 
be more convenient if they are recast as expressions for the mean velocities, 
which are defined as 

u" = U/H and v" = V/H. 

The recast horizontal momentum equations then become 
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and 

u" ,t + b[u"u" ,x + v"u" ,y1 = -gh,x- P*x/H + fv" + (Tsx- Tbx)/H 

+ (Ah/H) [(u"H) ,xx + (u"H) ,yy1 

v" ,t + b[u"v" ,x + v"v" ,y1 = -gh,y- P*y/H- fu" + (Tsy- Tby)/H 

+ (Ah/H) [(v"H) xx + (v"H) yy)1. , , 

4. The Internal Mode Equations 

The internal mode horizontal velocities are defined as 

u' = u - u" and v'=v-v". 

(A.ll) 

(A. 12) 

The equations of internal mode motion are derived by subtracting the external 
mode equations for the mean velocities from the total equation to get 

z 
u' ,t + uu' ,x + u'u" ,x + vu' ,y + v'u" ,y + wu' ,z = fv' +a g( f cdz) x + P*x 

h , 

( u" /H) (H ,xx + H yy) 1 
' (A.13) 

and 
z 

v' + uv' + u'v" + vv' + v'v" + wv' = -fu' + ag( f cdz) y + P*y 't ,x ,x ,y ,y ,z ' 
h 

- (Tsy-Tby)/H + (Avv' ,z) ,z + Ah[v' ,xx + v' ,yy- (v"/H)(H,xx + H,yy)1 
(A.14) 

The last term in each of (A.13) and (A.14), which contains the Laplacian of the 
total depth, will be neglected. 

5. The Dimensionless Vertical Coordinate 

We have chosen to recast the equations with the use of a dimensionless vertical 
coordinate. This permits the use of a constant number of vertical levels at all 
grids. The new coordinate is 

q = (z - h)/H, 

and has the value of 0 at the water surface, and -1 at the bottom. Partial 
derivatives with respect to z of a variable in the x,y,z,t-coordinate system, 
[ 1, are transformed to derivatives of the same variable in the x,y,q,t-coordinate 
system, ( ) by substituting 

[ 1 ,z = H-1( ) ,q 

and with respect to the horizontal variable r (= x or y) by substituting 
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[ ] r = ( ) r- [H-l(h r + qH r)]( >,q , , , ' 
and with respect to time by 

[ ] t = ( ) t- [H-l(l+q)h t]( ) q• 
' ' , ' 

The vertical velocity in the new coordinate system is 

w = dz/dt = d/dt(Hq + h) = (Hq + h) t + u(Hq + h) x + v(Hq + h) y 
• • • 

= HQ + (1 + q)h,t + u(h,x + qH,x) + v(h,y + qH,y) 

where Q = q,t· 

The momentum equations in the new coordinate system become 

and 

u' + uu' x + u'u" + vu' + v'u" + Qu' = fv' + Px*/H 't ' ,x ,y ,y ,q 

q 
+ ag[(H J cdq) x - (h x + qH x)c] + H-2(A u' ) , , ' ~"'V ,q ,q 

0 

- (Tsx- Tbx)/H + Ah[u' ,xx + u' ,yyl +HOT, 

v' + uv' + u'v" + vv' + v'v" + Qv' 't ,x ,x ,y ,y ,q 

q 
+ ag[(H Jcdq) ,y- (h,y + qH,y)c] + H-2 (~v' ,q> ,q 

0 

- (Tsy - Tby)/H + Ah[v' ,xx + v' ,yyl +HOT, 

-fu' + Py*/H 

(A.15) 

(A.17) 

(A.18) 

where HOT are higher-order horizontal diffusion terms arising from the fact 
that u' and v' vary over q. These terms will be neglected. The continuity 
equation becomes 

(Hu') x + (Hv') y + HQ = 0, , ' ,q 

and the concentration equation is 

(He) ,t +(Hue) ,x + (Hvc) ,y + (HQc) ,q- H-1 (Dvc,q>,q 

- HDh[c,xx + c,yyl = 0. 

The system of equations is now complete. 
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Table 1. Daily mean river flowrates duri~ the passage of hurricane Agnes 
(U.S. Army, 1975a). Units are m3/s. ( ' = peak value for day 
rather than mean) 

June Date 

River 20 21 22 23 24 2-5 26 27 

Susquehanna 1534 1426 12593 29432 31979' 28583 19696 11829 

Potomac 203 340 4868 7584 10159' 5660 2258 1007 

Rappahannock 31 181 3028' 1259 515 210 144 130 

York 51 88 296 1008' 971 940 812 608 

James 261 405 3849 8858' 5943 2510 812 563 
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(e) TOP VIEW- EXTERNAL MODE VARIABLES 
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(b) ISOMETRIC VIEW- INTERNAL MODE VARIABLES 

Figure 1. Placement on variables of the grid mesh. (a) Top view showing the 
external-mode variables. (b) Isometric view showing the internal-mode 
velocities, the vertical velocities, and the concentration. 

22 



RECTANGULAR TEST BASIN 

- ANALYTIC --MECCA 

0.12--r------------------------. 
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Figure 2. Comparison of computed and analytic water levels for the case of 
the forced oscillation at the open end of a rectangular basin of uniform 
depth. The MECCA solution is nearly identical to the analytic solution. 
The vertical scale has units of meters, and the horizontal scale units are 
timesteps (one timestep equals 30 minutes). 
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Figure 3. (a) Comparison of computed and analytic wind-driven currents. (b) 
Comparison of computed and analytic density-driven currents. 
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Figure 4. Comparison of computed and analytic velocities for the test of the 
non-linear advection terms in the momentum equation. 
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Figure 5. Comparison of computed and analytic concentration distribution for 
the case of pure horizontal diffusion after 32 hours. Basin depth is 10 m, 
and basin length shown is 55 km. 
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Figure 6. Comparison of computed and analytic concentration distribution for 
the case of horizontal advection balanced by vertical diffusion. Basin depth 
is 20 m, and total basin length is 120 km. 
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ATLANTIC OCEAN 

Figure 7. Chesapeake Bay watershed. Major rivers are the Susquehanna, Potomac, 
Rappahannock, York, and James. 
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PROTOTYPE CHESAPEAKE BAY GRID MESH 
t.L • 8.0 KM 

Figure 8. Grid mesh for the prototype model for Chesapeake Bay. The mesh 
consists of l76 cells, with a spacing of 8 km. 
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Figure 9. Depths (m) for the water grids in the prototype Cheasapeake Bay 
model grid. 
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Figure 10. (a) Tide heights (meters) at three points in the prototype grid. 
Horizontal units are hours. Transients damp out after a few cycles. (b) 
Comparison of observed and computed tide phases for Cwb=0.003. 
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Figure 11. (a) Comparison of observed and computed mean tide ranges along the 
Bay. Cwbz.003. (b) Comparison for Cwb=0.006. 
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Figure 12. (a) Same as Fig. lla~ but with the non-linear terms. (b) Same as 
Fig 12a, but with~ = 1000 m /s. 

33 



Tide Range along Boy with A-5000 

0.9 !\. 
::: ' -·-~00 

\" -o- MEcrA SOJuUon ;• 

::: .~~~ . 
-.....~· ""--· / .......... . 

"'-. ......____.~ 
~ 

Range (m) 

0.4 

0.3 

0.2 
(a) 

0.1 .1-----+---+---+----+-----+----t 
0 50 100 150 200 250 300 

Dlsl.lnce Along Boy Axis (km) 

Tide R~noe along Boy with A•10,000 

0.6 

Range (m) 0.5 

0.4 

0.3 

0.2 

(b) 
0.1 .1-----+---+----+-----+----+----1 

0 50 100 150 200 250 300 

Distance Along Boy Axis (km) 

Figure 13. (a) Same as Fig. lla, but with Ah=SOOO m2/s. (b) Same as Fig. 12a, 
but with Ah=lO,OOO m2/s. 
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Figure 14. Oceanic boundary conditions for salinity. Units are parts per 
thousand, 
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Figure 15. Cross-sectional distribution of salinity for the cases of 
Rv=0.001, 0.100. 
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Figure 16. Same as Fig. 15, but for~= 100, 1000 m2/s. 
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Figure 17. Salinity distribution at the start (solid lines) and after 9 days 
of simulation (0000 6/30) (dashed lines) with river flows simulating those 
from hurricane Agnes. The salinity displacement was at the maximum at the 
nineth day. 
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Figure 18. Susquehanna River flowrates (thousands of m3/s) from hurricane Agnes, 
and the modeled and observed displacement (km) of the 5 ppt isohaline down 
the Bay. 
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